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Introduction: Representation learning for CATE estimation 

Problem 
formulation: 
representa-
tion-based 
CATE 
estimation

Given i.i.d. observational dataset                       
- covariates
- binary treatments 
- continuous (factual) outcomes 

Representation learning methods estimate the conditional average treatment effect (CATE)

by (1) learning a low-dimensional (potentially constrained) representation

and by (2) estimating CATE wrt. representations

Why this is 
important?

● State-of-the-art methods for conditional average treatment effect (CATE) estimation make 
widespread use of representation learning

● Low-dimensional (potentially constrained) representations reduce the variance, but, at the 
same time lose information about covariates, including information about confounders
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Introduction: Representation-induced confounding bias

Problem 
formulation:
representa-
tion-induced 
confounding 
bias

● Constraints on the low-dimensional representations include:
○ treatment balancing with a probability metric:
○ invertibility: 

● Such low-dimensional representations can lead to a representation-induced 
confounding bias (RICB), which we want to estimate / bound

Original causal 
diagram Transformed causal 

diagram
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Introduction: Task complexity – Related work

Why this is 
hard?

● Directly estimating RICB is (1) impractical and (2) intractable:

● The partitioning of X is unknown as well 

Related work
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Introduction: Research gap – Our contributions

● We formalize the 
representation-induced confounding 
bias (RICB)

● We propose a neural framework for 
estimating bounds based on the 
Marginal Sensitivity Model, which 
can be seen as a refutation 
method for representation learning 
CATE estimators

● We show that the estimated bounds 
are highly effective for the 
CATE-based decision-making  

Our 
contributions

Research 
gap

● No work has studied the confounding bias (RICB) in low-dimensional (constrained) 
representations for CATE estimation 
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Representation learning for CATE estimation: Assumptions
● Potential outcomes framework (Neuman-Rubin):

○ (i) Consistency.  If       is a treatment for some patient, then
○ (ii) Positivity (Overlap).  There is always a non-zero probability of receiving/not 

receiving any treatment, conditioning on the covariates:
○ (iii) Exchangeability (Ignorability). Current treatment is independent of the potential 

outcome, conditioning on the covariates

●  Under assumptions (i)–(iii) CATE is identifiable

Identifiability 
assumptions

Implicit 
partitioning 
assumption

● We assume an implicit partitioning 
(clustering) of X on 
(1) noise
(2) instruments
(3) outcome-predictive covariates
(4) confounders

��
Original causal 

diagram

Clustered causal diagram
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Representation learning for CATE estimation: Methods

Meta-learners 
vs. representa-
tion-based 
CATE 
estimators 

● Meta-learners (DR-learner, R-learner, etc.) can obtain the best asymptotic 
performance and other properties by fitting several models (nuisance functions 
and pseudo-outcome regression)

● Representation-based CATE estimators aim at best-in-class estimation with one 
model, but contain many trade-offs

● In low-sample regime, there is no universally best solution1

1 Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In International Conference on Artificial 
Intelligence and Statistics, 2021.

= 

Alexander Calder - Untitled
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Types of representations: Valid representations

Valid 
representations 

● We call a representation           valid for CATE if it satisfies the following two 
equalities:

with

● Examples of valid representations:
○ Invertible representations (still help to reduce the variance when balanced)1

○ Removal of noise and instruments (achieved via balancing or lowering       )

1 Fredrik D. Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and representation learning for estimation of potential outcomes and causal effects. Journal 
of Machine Learning Research, 23:7489–7538, 2022.
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Types of representations: Loss of heterogeneity

Invalid 
representations 

(i) Loss of heterogeneity: the treatment effect at the covariate (individual) level is 
different from the treatment effect at the representation (aggregated) level:

● Happens whenever some information about         or          is lost in the 
representation. E.g., propensity score is such a representation.

● Reasons: too low       , too large balancing
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Types of representations: RICB

Invalid 
representations 

(i) Representation-induced confounding bias (RICB): CATE wrt. representations is 
non-identifiable from observational data

● Happens whenever some information about         is lost in the representation or when 
M-bias is induced (this is rather a theoretic concept)

● Reasons: too low       , too large balancing
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Types of representations: Takeaways

Takeaways 

● The minimal sufficient and valid representation would aim to remove only the 
information about noise and instruments

● The loss of heterogeneity does not introduce bias but can only make CATE less 
individualized, namely, suitable only for subgroups

● The RICB automatically implies a loss of heterogeneity => We consider the RICB to 
be the main problem in representation learning methods for CATE

● RICB is an infinite-sample confounding bias (not a low-sample bias), present in 
the representations
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Partial identification of CATE under the RICB: MSM

Marginal 
sensitivity model

● Our idea is to employ a Marginal sensitivity model (MSM)1 to perform the partial 
identification of the CATE (= find bounds on the RICB): 

where the sensitivity parameters can be estimated from the combined data

● Under the sensitivity constraint, the bounds on the RICB are given by

● The bounds are valid wrt. the original CATE and sharp wrt. the sensitivity constraint
● The bounds are still conservative, i.e., they do not distinguish instruments from 

confounders (but to do that we would need the original CATE)
● Yet, other sensitivity models, e.g., outcome sensitivity model, are impractical

1 Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of the American Statistical Association, 101(476):1619–1637, 2006.
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Partial identification of CATE under the RICB: Neural framework

          is a maximum over all                , where            are the representations of the training 
sample in δ-ball around      . δ is the only hyper-parameter



● We evaluate our refutation framework together with SOTA representation-based CATE 
estimators: TARNet, BNN, CFR, InvTARNet, RCFR, CFR-ISW, BWCFR

● To compare our bounds with the point estimates, we employ an error rate of the policy (ER):
○ a policy based on the point estimate of the CATE applies a treatment whenever the 

CATE is positive:

○ a policy based on the bounds on the RICB has three decisions: 

■ (1) to treat 

■ (2)  to do nothing

■ (3) to defer a decision, otherwise

● We used 1 synthetic and 2 semi-synthetic datasets (IHDP100, HC-MNIST)
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Experiments: Baselines – Evaluation – Datasets 

Baselines

Evaluation 

Datasets



● Our framework achieves clear improvements in the error rate among all the baselines, 
without deferring too many patients 
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Experiments: Results

Results



● Ablation study on δ shows, that the bounds remain valid under different values
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Experiments: Results

Results
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Conclusion
We studied the validity of representation learning 
for CATE estimation. The validity may be violated 
due to low-dimensional representations as these 
introduce a representation-induced
confounding bias. 

As a remedy, we introduced a novel, 
representation-agnostic refutation framework 
that estimates bounds on the RICB and thus 
improves the reliability of their CATEs. ArXiv Paper: 

arxiv.org/abs/2311.11321     

https://arxiv.org/abs/2311.11321
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Appendix: Johansson et al., 2022

Generalization 
bounds for the 
counterfactual 
risk 
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Appendix: Meta-learners

Meta-learners 
comparison


