

$m \subset m \subset$

Munich Center for Machine Learning

Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation

Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel

LMU Munich & Munich Center for Machine Learning (MCML), Munich, Germany

2nd Munich CausalML Workshop

Introduction: Representation learning for CATE estimation

State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning

Why this is

Problem

CATE

formulation:

important? Low-dimensional (potentially constrained) representations reduce the variance, but, at the same time lose information about covariates, including information about confounders

Given i.i.d. observational dataset $\mathcal{D} = \{X_i, A_i, Y_i\}_{i=1}^n \sim \mathbb{P}(X, A, Y)$

- covariates (X)
- binary treatments (A)
- continuous (factual) outcomes (Y)

representa-Representation learning methods estimate the conditional average treatment effect (CATE) tion-based $\tau^x(x) = \mathbb{E}(Y[1] - Y[0] \mid X = x)$ estimation by (1) learning a low-dimensional (potentially constrained) representation $\Phi(\cdot):X o \Phi(X)$

> and by (2) estimating CATE wrt. representations $\mu_1^{\phi}(\phi) - \mu_0^{\phi}(\phi)$ $\mu_a^{\phi}(\phi) = \mathbb{E}(Y \mid A = a, \Phi(X) = \phi)$

Introduction: Representation-induced confounding bias

diagram

- Constraints on the low-dimensional representations include:
 - treatment balancing with a probability metric: dist $[\mathbb{P}(\Phi(X) | A = 0), \mathbb{P}(\Phi(X) | A = 1)] \approx 0$ • invertibility: $\Phi^{-1}(\Phi(X)) \approx X$
- Such low-dimensional representations can lead to a **representation-induced confounding bias (RICB)**, which we want to estimate / bound

Problem formulation: representation-induced confounding bias

Transformed causal diagram

3

Introduction: Task complexity – Related work

• Directly estimating RICB is (1) impractical and (2) intractable:

Why this is hard?

$$\tau^{\phi}(\Phi(x)) = \int_{\mathcal{X}_{\Delta} \times \mathcal{X}_{Y}} \tau^{x}(x) \mathbb{P}(X^{\Delta} = x^{\Delta}, X^{y} = x^{y} \mid \Phi(x)) \, \mathrm{d}x^{\Delta} \, \mathrm{d}x^{y} \neq \tau^{x}(x)$$

• The partitioning of X is unknown as well $\{X^{\varnothing}, X^{a}, X^{\overline{y}}, X^{\Delta}\}$

Table 1: Overview of key representation learning methods for CATE estimation with respect to different constraints, imposed on the representation.

	Method	Treatment balancing via		Invertibility
		probability metrics	re-weighting	2
Related work	BNN (Johansson et al., 2016)	IPM (MMD)	-	-
	TARNet (Shalit et al., 2017; Johansson et al., 2022)	-	_	_
	CFR (Shalit et al., 2017; Johansson et al., 2022)	IPM (MMD, WM)	_	-
	RCFR (Johansson et al., 2018; 2022)	IPM (MMD, WM)	Learnable weights	-
	DACPOL (Atan et al., 2018); CRN (Bica et al., 2020); CT (Melnychuk et al., 2022)	JSD (adversarial learning)	_	
	SITE (Yao et al., 2018)	Middle point distance	-	Local similarity
	CFR-ISW (Hassanpour & Greiner, 2019a)	IPM (MMD, WM)	Representation propensity	-
	DR-CFR (Hassanpour & Greiner, 2019b); DeR-CFR (Wu et al., 2022)	IPM (MMD, WM)	Representation propensity	-
	DKLITE (Zhang et al., 2020)	Counterfactual variance	_	Reconstruction loss
	BWCFR (Assaad et al., 2021)	IPM (MMD, WM)	Covariate propensity	-

IPM: integral probability metric; MMD: maximum mean discrepancy; WM: Wasserstein metric; JSD: Jensen-Shannon divergence

Introduction: Research gap – Our contributions

Research gap

Our

contributions

- No work has studied the confounding bias (RICB) in low-dimensional (constrained) representations for CATE estimation
- We formalize the representation-induced confounding bias (RICB)
- We propose a neural framework for estimating bounds based on the Marginal Sensitivity Model, which can be seen as a refutation method for representation learning CATE estimators
- We show that the estimated bounds are highly effective for the CATE-based decision-making

Representation learning for CATE estimation: Assumptions

- Potential outcomes framework (Neuman-Rubin):
 - (i) Consistency. If A = a is a treatment for some patient, then Y = Y[a]
 - (ii) Positivity (Overlap). There is always a non-zero probability of receiving/not receiving any treatment, conditioning on the covariates: $\epsilon > 0$, $\mathbb{P}(1 \epsilon \ge \pi_a(X) \ge \epsilon) = 1$

Identifiability assumptions

Implicit

partitioning

assumption

- (iii) Exchangeability (Ignorability). Current treatment is independent of the potential outcome, conditioning on the covariates $A \perp Y[a] \mid X$ for all a.
- Under assumptions (i)–(iii) CATE is identifiable
- We assume an implicit partitioning (clustering) of X on {X^Ø, X^a, X^y, X^Δ}
 (1) noise
 (2) instruments
 - (3) outcome-predictive covariates
 - (4) confounders

Original causal diagram

Clustered causal diagram

Representation learning for CATE estimation: Methods

- Meta-learners (DR-learner, R-learner, etc.) can obtain the best asymptotic performance and other properties by fitting several models (nuisance functions and pseudo-outcome regression)
- Representation-based CATE estimators aim at best-in-class estimation with one model, but contain many trade-offs
- Meta-learners vs. representation-based CATE estimators

¹ Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In International Conference on Artificial Intelligence and Statistics, 2021.

8

Types of representations: Valid representations

- We call a representation $\Phi(\cdot)$ valid for CATE if it satisfies the following two equalities: $\tau^{x}(x) \stackrel{(i)}{=} \tau^{\phi}(\Phi(x))$ and $\tau^{\phi}(\phi) \stackrel{(ii)}{=} \mu_{1}^{\phi}(\phi) - \mu_{0}^{\phi}(\phi)$ with $\mu_{a}^{\phi}(\phi) = \mathbb{E}(Y \mid A = a, \Phi(X) = \phi)$
- Examples of valid representations:
 - Invertible representations (still help to reduce the variance when balanced)¹
 - \circ Removal of noise and instruments (achieved via balancing or lowering $\,d_{\phi}$)

¹ Fredrik D. Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and representation learning for estimation of potential outcomes and causal effects. Journal of Machine Learning Research, 23:7489–7538, 2022.

Types of representations: Loss of heterogeneity

(i) Loss of heterogeneity: the treatment effect at the covariate (individual) level is different from the treatment effect at the representation (aggregated) level:

$$\tau^x(x) \neq \tau^\phi(\Phi(x))$$

- Happens whenever some information about X^{Δ} or X^{y} is lost in the representation. E.g., propensity score is such a representation.
- Reasons: too low d_{ϕ} , too large balancing

Invalid representations

Types of representations: RICB

(i) Representation-induced confounding bias (RICB): CATE wrt. representations is non-identifiable from observational data $\mathbb{P}(\Phi(X), A, Y)$

 $au^{\phi}(\phi)
eq \mu_1^{\phi}(\phi) - \mu_0^{\phi}(\phi)$

- Happens whenever some information about X^{Δ} is lost in the representation or when M-bias is induced (this is rather a theoretic concept)
- Reasons: too low d_{ϕ} , too large balancing

Invalid representations

Types of representations: Takeaways

- The minimal sufficient and valid representation would aim to remove only the information about noise and instruments
- The loss of heterogeneity does not introduce bias but can only make CATE less individualized, namely, suitable only for subgroups

Takeaways

- The RICB automatically implies a loss of heterogeneity => We consider the RICB to be the main problem in representation learning methods for CATE
- RICB is an **infinite-sample confounding bias** (not a low-sample bias), present in the representations

Partial identification of CATE under the RICB: MSM

• Our idea is to employ a Marginal sensitivity model (MSM)¹ to perform the partial identification of the CATE (= find bounds on the RICB):

 $\Gamma(\phi)^{-1} \leq \left(\pi_0^{\phi}(\phi)/\pi_1^{\phi}(\phi)\right) \left(\pi_1^x(x)/\pi_0^x(x)\right) \leq \Gamma(\phi) \quad \text{for all } x \in \mathcal{X} \text{ s.t. } \Phi(x) = \phi$ where the sensitivity parameters can be **estimated from the combined data** $\mathbb{P}(X, \Phi(X), A, Y)$

• Under the sensitivity constraint, the bounds on the RICB are given by

$$\underline{\tau^{\phi}}(\phi) = \underline{\mu_1^{\phi}}(\phi) - \overline{\mu_0^{\phi}}(\phi) \quad \text{and} \quad \overline{\tau^{\phi}}(\phi) = \overline{\mu_1^{\phi}}(\phi) - \underline{\mu_0^{\phi}}(\phi)$$

Marginal sensitivity model

$$\begin{split} \underline{\mu}_{a}^{\phi}(\phi) &= \frac{1}{s_{-}(a,\phi)} \int_{-\infty}^{\mathbb{F}^{-1}(c_{-}\mid a,\phi)} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y + \frac{1}{s_{+}(a,\phi)} \int_{\mathbb{F}^{-1}(c_{-}\mid a,\phi)}^{+\infty} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y, \\ \overline{\mu}_{a}^{\phi}(\phi) &= \frac{1}{s_{+}(a,\phi)} \int_{-\infty}^{\mathbb{F}^{-1}(c_{+}\mid a,\phi)} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y + \frac{1}{s_{-}(a,\phi)} \int_{\mathbb{F}^{-1}(c_{+}\mid a,\phi)}^{+\infty} y \, \mathbb{P}(Y = y \mid a,\phi) \, \mathrm{d}y, \end{split}$$

- The bounds are **valid** wrt. the original CATE and **sharp** wrt. the sensitivity constraint
- The bounds are still conservative, i.e., they do not distinguish instruments from confounders (but to do that we would need the original CATE)
- Yet, other sensitivity models, e.g., outcome sensitivity model, are impractical

Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of the American Statistical Association, 101(476):1619–1637, 2006.

Partial identification of CATE under the RICB: Neural framework

 $\hat{\Gamma}(\phi_i)$ is a maximum over all $\hat{\Gamma}(\Phi(x_j))$, where $\Phi(x_j)$ are the representations of the training sample in δ -ball around ϕ_i . δ is the only hyper-parameter

Experiments: Baselines – Evaluation – Datasets

- We evaluate our refutation framework together with SOTA representation-based CATE estimators: TARNet, BNN, CFR, InvTARNet, RCFR, CFR-ISW, BWCFR
- To compare our bounds with the point estimates, we employ an error rate of the policy (ER):
 - a policy based on the point estimate of the CATE applies a treatment whenever the CATE is positive:

$$\hat{\pi}(\phi) = \mathbb{1}\{\widehat{\tau^{\phi}}(\phi) > 0\}$$

Evaluation

Baselines

Datasets

- a policy based on the bounds on the RICB has three decisions:
 - (1) to treat $\widehat{\underline{\tau^{\phi}}}(\phi) > 0$
 - (2) to do nothing $\widehat{\overline{\tau^{\phi}}}(\phi) < 0$
 - (3) to defer a decision, otherwise
- We used 1 synthetic and 2 semi-synthetic datasets (IHDP100, HC-MNIST)

Experiments: Results

 Our framework achieves clear improvements in the error rate among all the baselines, without deferring too many patients

	ER _{out} (A	ΔER_{out})		$ $ ER _{out} (Δ ER _{out})			
d_{ϕ}	1	2	d_{ϕ}	7	39	78	
TARNet	30.79% (-12.89%)	9.82% (-3.73%)	TARNet	11.21% (-2.59%)	10.91% (-3.34%)	11.01% (-2.62%)	
BNN (MMD; $\alpha = 0.1$)	34.32% (-15.41%)	16.15% (-4.19%)	BNN (MMD; $\alpha = 0.1$)	12.00% (-4.50%)	11.37% (-5.29%)	20.78% (-2.01%)	
CFR (MMD; $\alpha = 0.1$)	35.01% (-14.27%)	11.92% (-5.54%)	CFR (MMD; $\alpha = 0.1$)	11.40% (-1.89%)	11.05% (-3.13%)	11.73% (-4.67%)	
CFR (MMD; $\alpha = 0.5$)	35.79% (-11.43%)	17.89% (-7.27%)	CFR (MMD; $\alpha = 0.5$)	16.01% (+19.25%)	12.55% (-4.95%)	12.90% (-5.25%)	
CFR (WM; $\alpha = 1.0$)	34.97% (-14.27%)	10.88%(-7.97%)	CFR (WM; $\alpha = 1.0$)	24.55% (-10.42%)	27.87% (-10.18%)	31.19% (-11.53%)	
CFR (WM; $\alpha = 2.0$)	35.18% (-13.63%)	13.19% (-6.28%)	CFR (WM; $\alpha = 2.0$)	31.71% (-10.34%)	30.77% (-7.22%)	31.83% (-11.91%)	
InvTARNet	29.51% (-0.95%)	5.64% (-0.02%)	InvTARNet	12.18% (-1.29%)	11.38% (-3.98%)	11.55% (-4.34%)	
RCFR (WM: $\alpha = 1.0$)	3302%(-358%)	8.00%(-4.27%)	RCFR (WM; $\alpha = 1.0$)	21.51% (-9.17%)	26.97% (-6.17%)	30.14% (-14.26%)	
CFR-ISW (WM: $\alpha = 1.0$)	35.02% (-9.43%)	7.27%(-1.86%)	CFR-ISW (WM; $\alpha = 1.0$)	32.64% (-10.32%)	26.66% (-11.30%)	30.02% (-13.31%)	
BWCFR (WM: $\alpha = 1.0$)	34.97% (-10.02%)	7.44% (-4.57%)	BWCFR (WM; $\alpha = 1.0$)	13.62% (-3.96%)	28.18% (+0.24%)	32.54% (-6.75%)	

Results

Classical CATE estimators: k-NN: 8.18%; BART: 17.37%; C-Forest: 16.10%

Lower = better. Improvement over the baseline in green, worsening of the baseline in red Classical CATE estimators: k-NN: 22.34%; BART: 17.51%; C-Forest: 17.65%

	ER _{out} (Δ ER _{out})					
d_{ϕ}	5	10	15	20	25	
TARNet	3.17% (-2.65%)	2.88% (-2.30%)	3.28% (-2.74%)	3.23% (-2.52%)	2.89% (-2.37%)	
BNN (MMD; $α = 0.1$) CFR (MMD; $α = 0.1$) CFR (MMD; $α = 0.5$) CFR (WM; $α = 1.0$) CFR (WM; $α = 2.0$)	$\begin{array}{c} 2.32\% \ (-1.49\%) \\ 1.77\% \ (-0.89\%) \\ 2.07\% \ (-1.46\%) \\ 1.93\% \ (-0.89\%) \\ 1.97\% \ (-0.04\%) \end{array}$	2.43% (-1.40%) 2.09% (-1.03%) 2.00% (+3.98%) 1.75% (-0.25%) 2.17% (-1.49%)	2.59% (-2.03%) 2.23% (-1.63%) 2.68% (+1.89%) 1.83% (-1.24%) 2.05% (-1.21%)	$\begin{array}{c} 2.43\% \ (-1.87\%) \\ 1.88\% \ (-0.48\%) \\ 2.36\% \ (+6.37\%) \\ 1.83\% \ (-0.49\%) \\ 2.08\% \ (-1.29\%) \end{array}$	2.29% (-1.16%) 2.04% (-1.46%) 2.17% (+3.41%) 1.80% (-0.20%) 2.09% (-1.36%)	
InvTARNet	2.52% (-1.95%)	3.11% (-2.47%)	2.99% (-2.51%)	2.79% (-2.41%)	2.83% (-2.28%)	
$\begin{array}{l} \text{RCFR (WM; } \alpha = 1.0) \\ \text{CFR-ISW (WM; } \alpha = 1.0) \\ \text{BWCFR (WM; } \alpha = 1.0) \end{array}$	3.36% (-2.84%) 2.24% (-0.96%) 3.57% (-1.49%)	3.45% (-1.52%) 1.93% (-0.68%) 3.52% (-2.16%)	2.67% (-1.57%) 1.71% (-1.18%) 3.88% (-1.10%)	4.69% (-3.83%) 1.85% (-1.54%) 3.80% (-2.38%)	1.95% (+1.06%) 1.88% (-0.19%) 4.07% (-1.18%)	

Lower = better. Improvement over the baseline in green, worsening of the baseline in red

Classical CATE estimators: k-NN: 7.47%; BART: 5.07%; C-Forest: 6.28%

Experiments: Results

• Ablation study on δ shows, that the bounds remain valid under different values

Results

Conclusion

We studied the validity of representation learning for CATE estimation. The validity may be violated due to low-dimensional representations as these introduce a **representation-induced confounding bias**.

As a remedy, we introduced a novel, **representation-agnostic refutation framework** that estimates bounds on the RICB and thus improves the reliability of their CATEs.

ArXiv Paper: arxiv.org/abs/2311.11321

Appendix: Johansson et al., 2022

Theorem 2. Given is a sample $(x_1, t_1, y_1), ..., (x_n, t_n, y_n) \stackrel{i.i.d.}{\sim} p(X, T, Y)$ with empirical measure \hat{p} . Assume that ignorability (Assumption 1) holds w.r.t. X. Suppose that Φ is a twice-differentiable, invertible representation, that $h_t(\Phi)$ is a hypothesis on \mathcal{Z} , and $f_t = h_t(\Phi(x)) \in \mathcal{H}$. Let $\ell_{\Phi,h_t}(z) := \mathbb{E}_Y[L(h_t(z), Y(t)) \mid X = \Psi(z)]$ where L(y, y') = $(y - y')^2$. Further, let A_{Φ} be a constant such that $\forall z \in \mathcal{Z} : A_{\Phi} \geq |J_{\Psi}(z)|$, where $J_{\Psi}(z)$ is the Jacobian of the representation inverse Ψ , and assume that there exists a constant $B_{\Phi} > 0$ such that, with $C_{\Phi} := A_{\Phi}B_{\Phi}, \ell_{\Phi,h_t}/C_{\Phi} \in \mathcal{L}$, where \mathcal{L} is a reproducing kernel Hilbert space of a kernel, k such that $k(x, x) < \infty$. Finally, let w be a valid re-weighting of $p_{\Phi,t}$. Then, with probability at least $1 - 2\delta$,

$$R_{1-t}(f_t) \leq \hat{R}_t^w(f_t) + C_{\Phi} \cdot \operatorname{IPM}_{\mathcal{L}}(\hat{p}_{\Phi,1-t}, \hat{p}_{\Phi,t}^w) + V_{p_t}(w, \ell_{f_t}) \frac{\mathcal{C}_{n_t,\delta}^{\mathcal{H}}}{n_t^{3/8}} + \mathcal{D}_{n_0,n_1,\delta}^{\Phi,\mathcal{L}}\left(\frac{1}{\sqrt{n_0}} + \frac{1}{\sqrt{n_1}}\right) + \sigma_{Y(t)}^2$$
(20)

where $C_{n,\delta}^{\mathcal{H}}$ is a function of the pseudo-dimension of \mathcal{H} , $\mathcal{D}_{n_0,n_1,\delta}^{\mathcal{L}}$ is a function of the kernel norm of \mathcal{L} (see Lemma 5), both only with logarithmic dependence on n and m, $\sigma_{Y(t)}^2$ is the expected variance in Y(t), and $V_p(w, \ell_f) = \max\left(\sqrt{\mathbb{E}_p[w^2\ell_f^2]}, \sqrt{\mathbb{E}_{\hat{p}}[w^2\ell_f^2]}\right)$. A similar bound exists where \mathcal{L} is the family of functions Lipschitz constant at most 1 and IPM_{\mathcal{L}} the Wasserstein distance, but with worse sample complexity.

Generalization bounds for the counterfactual risk

Appendix: Meta-learners

